
ISRAEL JOURNAL OF MATHEMATICS 131 (2002), 277-284 

ON THE OUTER AUTOMORPHISM GROUP 
OF A HYPERBOLIC GROUP 

BY 

KOJI FUJIWARA 

Mathematical Institute, Tohoku University 
Sendal, 980-8578 Japan 

e-mail: ~ujiwara@math.tohoku.ae.jp 

Dedicated to Professor Takushiro Ochiai for his sixtieth birthday 

ABSTRACT 

Let G be a one-ended, word-hyperbol ic  group. Let F be an i rreducible 

la t t ice  in a connected  semi-s imple Lie group of r ank  at  least  2. If h:  F 

Out(G) is a homomorphism,  then Im(h) is finite. 

1. In t roduc t ion  

Let S be a compact, connected surface possibly with boundary. The mapping 

class group Mod(S) is the group of isotopy classes of homeomorphisms of S. 
When S is orientable, we consider only orientation-preserving maps. The follow- 

ing Farb Kaimanovich-Masur rigidity theorem is shown for orientable surfaces 
in [II] and [6] (or see [2] for another proof). We show that the theorem holds for 

non-orientable surfaces as well by reducing the argument to the orientable case. 

THEOREM 1: Let N be a compact, connected surface, possibly with boundary. 

Let F be an irreducible lattice in a connected semi-simple Lie group (possibly 

with infinite center) of rank at least 2. Let h: F --+ Mod(N) be a homomorphism. 

Then Ira(h) is finite. 

Combining Theorem 1 and a deep result by Sela [16] regarding the structure 

of the outer automorphism group of a word-hyperbolic group, we immediately 

get the following result. 
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COROLLARY 2: Let G be a torsion-free, word-hyperbolic group. Suppose that 

G is freely indecomposable. Let F be an irreducible lattice in a connected semi- 

simple Lie group of  rank at least 2. Let h: F --+ Out(G) be a homomorphism. 

Then Ira(h) is finite. 

To deal with word-hyperbolic groups with torsions, we have to understand the 

mapping class groups of 2-orbifolds. In Section 3 we show that  Theorem 1 is 

valid for a hyperbolic 2-orbifold of finite volume as well (Theorem 8). I t  enables 

us to generalize Corollary 2 to the following form. By a theorem of Stallings, a 

group G which is not virtually cyclic is one-ended if and only if it does not split 

along a finite subgroup as an amalgamation or an HNN extension. 

THEOREM 3: Let G be a one-ended word-hyperbolic group. Let F be an ir- 

reducible lattice in a connected semi-simple Lie group of rank at least 2. Let 

h: F --4 Out(G) be a homomorphism. Then Im(h) is finite. 

If  G is two-ended, then it is virtually Z, and the theorem is valid. The case 

that  hyperbolic groups have more than two ends seems difficult. In particular 

we do not know if the theorem still holds when G is a free group of rank at least 

two. 

ACKNOWLEDGEMENT: The author would like to thank Peter Scott, Nariya 

Kawazumi and Zlil Sela for their suggestions. He would like to thank IHES 

for its hospitality. 

2. P r o o f s  o f  T h e o r e m  1 a n d  C o r o l l a r y  2 

Theorem 1 is already proven when N is orientable in [11] and [6]. So we assume 

that  N is non-orientable. We first t reat  the case when N is closed. 

LEMMA 4: Let N be a closed, non-orientable surface. Suppose N is not p2 nor 

a Klein bottle. Let 0 be an orientable surface which is a double cover of  N.  

Then there exists a finite index subgroup G in Mod(N) which is isomorphic to a 

subgroup in Mod(O). 

Proof'. Let Mod J: (O) denote the group of isotopy classes of all (orientation 

preserving or reversing) homeomorphisms of O. Let i be an involution of O such 

that  O/i  = N.  Let S(O) be the subgroup in Mod+(O) of the isotopy classes of 

homeomorphisms f of O with f o i = i o f .  In [3], it is shown that  there is an 

exact sequence such that  

1 -+ Z /2Z  --+ S(O) ~ Mod(N) --+ 1. 
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S(O) contains orientation reversing homeomorphisms of O. Take the subgroup 

St(O) in S(O) of all orientation preserving maps. Then S~(O) is a subgroup of 

Mod(O). It is known that  Mod(O) contains a subgroup K of finite index which 

is torsion-free [10]. Put  G = S'(O) n K. G has finite index in S(O). Since G is 

torsion-free, from the exact sequence, we see that j is injeetive on G, so that G 

is a subgroup in Mod(N),  which is of finite index. | 

Having Lemma 4 we can prove Theorem 1 when N is closed. 

PROPOSITION 5: Let F be an irreducible lattice in a semi-simple Lie group of 

rank at /east 2. Let N be a connected, non-orientable, compact surface. Let 

h: F -~ Mod(N) be a homomorphism. If N is dosed, then Im(h) is finite. 

Proof: I f N  = p2 or Klein bottle, then the conclusion holds since Mod(N) = {1} 

or Z /2Z x Z/2Z,  respectively (see [3]). So suppose N is not p2 nor Klein bottle. 

Let O be an orientable double cover of N. Then, by Lemma 4, there exists 

a subgroup G of finite index in Mod(N) which is isomorphic to a subgroup in 

Mod(O). Thus there exists a subgroup U of finite index in F with h(r ')  c a ,  so 

that one obtains h: U --+ Mod(O). Since r t is also a lattice and O is orientable, 

by the Farb Kaimanovich-Masur rigidity theorem, h(r') is finite. This implies 

that h ( r )  is finite. | 

Now we discuss surfaces with boundary. Let S be a compact, connected surface, 

possibly with boundary. A map in Mod(S) generally permutes the components 

in the boundary of S. Let S ° denote the interior of S, and * a point in S °. Let 

Mod(S, .)  denote the group of the isotopy classes (relative to *) of homeomor- 

phisms of S which preserve . .  Let H(S) denote the group of homeomorphisms 

of S, and H(S, *) the subgroup in H(S) of homeomorphisms which preserve *. 

The following result is well-known (see for example [14]). 

LEMMA 6: Let M be a compact connected surface (possibly with boundary). 

Suppose M is not S 2, p 2  D 2, a Klein bottle, a torus, an annulus, a Moebius 

band. Then there exists the following exact sequence. 

1 -~ Irl(M) --+ Mod(M, *) ~ Mod(M) -~ 1. 

If M is one of the surfaces excluded above, we have the following. 

rrl (M) -+ Mod(M, *) ~ Mod(M) -+ 1. 

We start the proof of Theorem 1. 
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Proof: The theorem is known when N is orientable ([11], [6]). So assume that  

N is non-orientable. We work inductively on the number p of the boundary 

components of N. The conclusion holds when p = 0 by Proposition 5. Suppose 

that the theorem is true for p, and assume that the number of the boundary 

components of N is p + 1. Choose one boundary component of N and denote it 

B. Passing, if necessary, to a subgroup F p of finite index in F, we may assume 

that  h(F ~) leaves the component B invariant. Let M be the surface N with a 

2-disk attached along B. M has p boundary components. Let • E M °. Then the 

subgroup of Mod(N) which leaves B invariant is isomorphic to Mod(M, *). So 

we may consider that  h(F ~) C Mod(M, ,).  

First assume that  M is not p 2  a Klein bottle, nor a Moebius band. By Lemma 

6, there is the following exact sequence. 

1 --+ ~rl(M) --+ Mod(M, , )  -J+ Mod(M) --+ 1. 

By the induction assumption, i o h(F t) is finite, so that,  if necessary, passing to 

a subgroup F" of finite index in F', h(F") C Ker(i). Thus h(F") C ~I(M).  Since 

F" is a lattice and M is a surface, it follows that h(F") is finite. Hence Ira(h) is 

finite. 

Next assume that M is p2, a Klein bottle, or a Moebius band. We have the 

following exact sequence. 

7rl(M) --+ Mod(M, *) --+ Mod(M) -+ 1. 

Since both r l ( M )  and Mod(M) are virtually abelian in this case, and F' is a 

lattice, it is easy to see that h(F') C Mod(M, *) is finite. Hence Im(h) is finite. 

We have have proved Theorem 1. | 

We prove Corollary 2. 

Proof'. Corollary 2 is proven in [7] under some extra assumption on "orientabil- 

ity" of G, and we follow the argument. Sela [16] showed, using his theory of 

JSJ decomposition, that  Out(G) contains a subgroup A of finite index which is 

isomorphic to Z n × (1-Ii Mod(Si)) such that n _> 0 is an integer and S / i s  a finite 

(possibly empty) collection of compact (orientable or non-orientable) surfaces, 

which the JSJ decomposition of G gives as "quadratically hanging surfaces". 

Put  F' = h - l (A) .  F t is a subgroup of finite index in F. It is a standard fact that 

on a lattice of the kind we discuss here, there is no non-trivial homomorphism 

to Z (by the Kazhdan-Margulis subgroup theorem). So h(F ~) is contained in the 

direct factor 1-[i Mod(Si) in A. 
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Let Pi be the projection from I]i  Mod(Si) to Mod(Si). Apply Theorem 1 to 

each homomorphism Pi o h and obtain that p~ o h(F') is finite for all i, so that 

h(F') is finite. So Im(h) is finite. II 

3. H y p e r b o l i c  2-orbi folds  and  p r o o f  of  T h e o r e m  3 

Let G be a discrete subgroup of Isom(N 2). In general, E = N 2 / G  is a hyperbolic 

2-orbifold and G is its orbifold fundamental group. 7r: H 2 --+ E is a branched 

cover. If G is torsion free, then E is a 2-manifold. If G does not contain reflections, 

then the singular set of E is a finite collection of points. 

In the following we always assume that E is a hyperbolic 2-orbifotd of finite 

volume. Suppose E is orientable. G is a finitely generated fuchsian group. G does 

not contain reflections. Let Ei (i = 1 , . . . ,  k) be the set of singular points on E 

with distinguished index ei. Let H(E)  denote the group of orientation-preserving 

homeomorphisms h: E --+ E such that 

h(E~) = E i (i = 1 , . . . , k ) .  

Let Mod(E) denote the group of isotopy classes of H(E) .  

Let Out+(G) be the orientation-preserving and type-preserving (see [9] for 

definition) outer automorphism group of G. By Theorem 1 in [9], 

Mod(E) -~ Out+(G).  

We have the same isomorphism when E is not orientable as well. In this case 

Out+(G) is the type-preserving outer automorphism group of G. We can show 

it by following the argument given for the orientable ones in [9]. We only briefly 

outline it and point out where we have to do modification for the non-orientable 

case. If G contains reflections then it requires slightly different treatment in 

some steps in the argument. In this case E is a surface with totally geodesic 

boundary. Let E0 be the set of singular sets on E for the reflections, and put 

So = s - U =o 

Pick a base point Xo C E0. We can always isotope f C H(E)  so that  it fixes 

x0. If f E H(E)  is homotopic in E0 to the identity, then f is isotopic in H(E)  to 

the identity (cf. Lemma 2 in [9]). This part relies on a theorem by Epstein ([5]), 

which is valid for orientable or non-orientable surfaces with or without boundary. 

This implies that Mod(E) is isomorphic to a subgroup of finite index in Mod(E0) 

(Corollary 3 in [9]). Elements in Mod(E0) may permute E / s  in general. 

We define a homomorphism ~: Mod(E) --+ Out+(G). Let X be an arbitrary 

connected component of N 2 - ~r-l(Uk=0 E i). If E0 is empty there is only one 
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component. X -+ Eo is a regular cover. Let f E H(E) .  Then f :  Eo --+ Eo lifts to 

a homeomorphism/*:  X --4 X, which uniquely extends to H 2 . If Eo is not empty, 

then we first extend f* to the closure of X in H 2 , then to H 2 using the reflections. 

Define ~ by ~a('~) = f*7( /* )  -1. Then ~a E Aut+(G).  Since f* is not unique, ~ is 

determined up to inner automorphism. Now we define ~: Mud(E) --+ Out+(G) 

by ~([f]) = [~], where [f] is the isotopy class of f and [p] is the automorphism 

class of f .  ~ is well-defined. 

is one-to-one. If f lifts f* which induces an inner automorphism of F, then 

it will lift to a homeomorphism which induces the identity automorphism. Then, 

by a theorem of Marden ([13]), f is homotopic in E0 to the identity. Marden 

stated his result only for the orientable case, but his argument also works for the 

non-orientable cases as well by a minor modification. One key ingredient is the 

following result (Lemma 1 in [13]). 

LEMMA 7: Suppose S is a Riemann surface and f is a homeomorphism of  S. I f  

there exists an arc 7 from a point * E S to g(*) such that a is homotopic to 

7g(a)7 -1 for all simple closed curves a at , ,  then f is homotopic to the identity. 

For this result one can find an argument by Ahlfors in Section 6 in Bers [1], 

which works equally for our E. One remark is that  even when Eo is not empty, 

the assumption in Lemma 7 is required only for simple closed curves on E - Eo, 

which one can verify following Marden's argument. Finally, it follows from a 

theorem of Epstein [5] that  f is in fact isotopic in Eo to the identity. 

is onto. This is well known in the case that E is a manifold as a theorem 

of Fenchel-Nielsen. When E is an (orientable or non-orientable) 2-orbifold, one 

can find a proof by Macbeath (Theorem 3 in [12]). Macbeath has treated only 

the case when E is compact, but the same argument applies when E is of finite 

volume. The argument is based on the existence and the uniqueness of extremal 

quasi-conformal mappings for Riemann surfaces, which are known for not only 

compact ones but  also ones of finite volume. 

We obtained an isomorphism ~: Mud(E) --+ Out+ (G) when E is non-orientable 

as well. In particular, Out+ (G) is isomorphic to a subgroup (of finite index) in 

Mod(Eo) when E is orientable or non-orientable. In general E0 is not compact. 

We delete from E0 a small open neighborhood at each point in Ei (i = 1 , . . . ,  k) 

and an open cusp neighborhood at each cusp of E0 such that those are mutually 

disjoint. We obtain a compact surface E~ with Mud(E0) = Mod(E~). We apply 

Theorem 1 to E~ and obtain the following theorem. 

THEOREM 8: Let E be a hyperbolic 2-orbifold of finite volume. Let F be an 
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irreducible lattice in a connected semi-simple Lie group of  rank at least 2. Let  

h: F -+ Mod(E) be a homomorphism. Then Ira(h) is finite. 

We prove Theorem 3. 

Proo~ Let G be a one-ended, word-hyperbolic group. We use the JSJ decom- 

position due to Bowditch [4]. His theorem applies to all one-ended hyperbolic 

group. It  gives a finite collection of "hanging" hyperbolic 2-orbifolds Ei of finite 

volume. Since G is one-ended, each puncture in Ei corresponds to an edge in 

the JSJ decomposition, so that  an element in Out(G) gives only type-preserving 

elements for Ei. It  follows that  Out(G) has a subgroup of finite index which is 

a direct product of a free abelian group and the mapping class groups Mod(Ei).  

Therefore one can deduce Theorem 3 from Theorem 8 as before. | 
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